It's about time! People have been banging on my door, tackling me in parking lots, and calling me at 3:00 AM to demand that I finish my series of blog posts about halftones. Well, maybe the part about being tackled in the parking lot is a bit of a hyperbole. But, there were two comments on the previous blog post in this series.
In the first four parts of this series, I described four different mathematical models that allow one to estimate the color of a halftone.
1. Murray-Davies equation
The Murray-Davies equation estimates the spectrum of a halftone from three pieces of information: the spectra of the paper and of the solid, and the percentage of area that is covered by the halftone. The model assumes that the halftone area has either the reflectance of the solid, or the reflectance of the paper, and that the ratio between them is the halftone area on the plate or in the digital file.
2. Murray-Davies equation with dot gain correction
In this model, the straight Murray-Davies equation is augmented with a further assumption - that the halftone dots grew somewhere between the plate (or file) and the substrate. Note that I didn't have to change much in the equation. I just changed Ain (the input dot area in the file) to Aout, which is the effective dot area on the substrate.
3. Yule-Nielsen equation
The Yule-Nielsen equation assumes that there is a leakage of color from the halftone dots to the substrate between the dots. This acts to boost the color beyond what the Murray-Davies formula predicts. There is a parameter, called the n-factor, which is used to adjust the amount of leakage. In the equation below, n is used to characterize the richness of the halftone.
4. Noffke-Seymour
The Noffke-Seymour equation assumes that the volume of ink is equal to the halftone area on the plate or in the digital file. That amount of ink is squished out to some greater or lesser degree. The ink film of the dots is smaller, but the dots cover more area. Beer's law is used to predict the reflectance of the dots. In the equation below, Aout is used to characterize the richness of the halftone.
Assessment of the equations
In part 3 of the series I pointed out that the two Murray-Davies formulas provide a poor prediction of the color of a halftone. (Parents, please cover your children's ears. I am about to spew some apostasy.) It is unfortunate, but Murray-Davies remains the predominant mindset. It has been enshrined even in ISO 12647-2, which provides us with curves for what the TVI should be, despite the fact that the predictions from this are just plain lousy. Yes, I said it. ISO 12647-2 promulgates a dumb idea.
OK, so maybe that's an over-statement? The idea of TVI is good in principle. Using Murray-Davies, you get one number from which to assess how rich the color of a halftone is. Having one number is great for process control. But there are much better alternatives: either equation 3 or 4. Either of these equations have a single parameter to express the richness at which a halftone is printing. The benefit is that they both provide a reasonably accurate estimate of the spectrum of that halftone. Given the spectra or paper and solid, along with one number to describe the richness, you can reconstruct the spectrum of the halftone.
Why does this matter?
Maybe it doesn't matter that we use TVI, which is based on a poor model of reality. Everything is working, right? Well... I would beg to differ.
First problem: If I compute the TVI of AM and FM tone ramps, TVI would lead me to believe that a simple plate curve can make one look like the other. Or that I could make a magenta tone ramp printed offset look like a magenta tone ramp that was printed gravure or ink jet. Getting the proper TVI is a necessary, but not sufficient, condition to get a color match.
Second problem: If you compute TVI in one region of the spectrum, you won't necessarily get the same TVI from another region. This problem led to the SCHMOO initiative. (SCHMOO stands for Spot Color Halftone Metric Optimization Organization.)
Third problem: How do you compute the spectrum of a halftone? You can't accurately estimate the spectrum (or color) of a halftone using TVI and Murray-Davies.
Which is better?
So, the natural question is, which equation is more better? Yule-Nielsen or Noffke-Seymour?
First, I need to acknowledge my own affiliations. Many of you may be under the impression that my last name is "Math Guy". This is not quite correct. My middle name is "the Math Guy", and my last name is Seymour. Yes... the Seymour of the Noffke-Seymour equation.
Second, I will make a totally impartial statement which can be proved with algebra. At the extremes, the two equations (YN and NS) are identical. At the end of minimum richness, they both simplify to the Murray-Davies equation. At the other end (maximum richness) they both simplify to Beer's law.
Both equations are based on verifiable assumptions about the underlying physics. Light spreads in the paper, and that causes halftones to be richer. Halftones dots squish out and that causes halftones to be richer. Which one is the predominant effect?
I will make another totally impartial statement. It doesn't really much matter which physical effect is larger. It has been demonstrated through looking at a bunch of data that numerically, the effects are very similar. In between the two extremes, the two equations act very similarly. I suppose some math guy could figger some way to figger just how close the two equations are. But, experience says they are close.
In short, it doesn't much matter which equation (YN or NS) is used. I prefer mine, of course, because. Just "because".
Call to action
What to do about this? To be honest, I don't know. But, the first step to recovery is a trip to the bookstore to buy a shelf full of self-help books. (While you are there, ask about my latest book, How I Recovered from My Addiction to Self-Help Books.)
Part of the problem is that Murray-Davies is such a wonderfully simple equation. You can easily solve it going forward. As it is written above, you can plug in the spectrum of the solid, the substrate and a dot area, and it will give you an estimate of the spectrum of that halftone. But (and here is the cool part) anyone who remembers some of their high school algebra can solve the Murray-Davies equation for the dot area. Plug in the three spectra (solid, substrate, and halftone) and you can solve for the apparent dot area. You can poke this into one cell of a spreadsheet even after a whole evening of experimenting with Beer's law.
This does not hold true for the YN or NS equations. :( These are both "trap door" equations. You can go one way easily, but going the other way requires a bunch more cells, maybe even a whole page. They both require an iterative approach to solving.
If only I knew a math guy who could figger this out!
Picture taken from out of my window
In the first four parts of this series, I described four different mathematical models that allow one to estimate the color of a halftone.
1. Murray-Davies equation
The Murray-Davies equation estimates the spectrum of a halftone from three pieces of information: the spectra of the paper and of the solid, and the percentage of area that is covered by the halftone. The model assumes that the halftone area has either the reflectance of the solid, or the reflectance of the paper, and that the ratio between them is the halftone area on the plate or in the digital file.
2. Murray-Davies equation with dot gain correction
In this model, the straight Murray-Davies equation is augmented with a further assumption - that the halftone dots grew somewhere between the plate (or file) and the substrate. Note that I didn't have to change much in the equation. I just changed Ain (the input dot area in the file) to Aout, which is the effective dot area on the substrate.
3. Yule-Nielsen equation
The Yule-Nielsen equation assumes that there is a leakage of color from the halftone dots to the substrate between the dots. This acts to boost the color beyond what the Murray-Davies formula predicts. There is a parameter, called the n-factor, which is used to adjust the amount of leakage. In the equation below, n is used to characterize the richness of the halftone.
4. Noffke-Seymour
The Noffke-Seymour equation assumes that the volume of ink is equal to the halftone area on the plate or in the digital file. That amount of ink is squished out to some greater or lesser degree. The ink film of the dots is smaller, but the dots cover more area. Beer's law is used to predict the reflectance of the dots. In the equation below, Aout is used to characterize the richness of the halftone.
Assessment of the equations
In part 3 of the series I pointed out that the two Murray-Davies formulas provide a poor prediction of the color of a halftone. (Parents, please cover your children's ears. I am about to spew some apostasy.) It is unfortunate, but Murray-Davies remains the predominant mindset. It has been enshrined even in ISO 12647-2, which provides us with curves for what the TVI should be, despite the fact that the predictions from this are just plain lousy. Yes, I said it. ISO 12647-2 promulgates a dumb idea.
OK, so maybe that's an over-statement? The idea of TVI is good in principle. Using Murray-Davies, you get one number from which to assess how rich the color of a halftone is. Having one number is great for process control. But there are much better alternatives: either equation 3 or 4. Either of these equations have a single parameter to express the richness at which a halftone is printing. The benefit is that they both provide a reasonably accurate estimate of the spectrum of that halftone. Given the spectra or paper and solid, along with one number to describe the richness, you can reconstruct the spectrum of the halftone.
Why does this matter?
Maybe it doesn't matter that we use TVI, which is based on a poor model of reality. Everything is working, right? Well... I would beg to differ.
You really think your TVI formula is working?
First problem: If I compute the TVI of AM and FM tone ramps, TVI would lead me to believe that a simple plate curve can make one look like the other. Or that I could make a magenta tone ramp printed offset look like a magenta tone ramp that was printed gravure or ink jet. Getting the proper TVI is a necessary, but not sufficient, condition to get a color match.
Second problem: If you compute TVI in one region of the spectrum, you won't necessarily get the same TVI from another region. This problem led to the SCHMOO initiative. (SCHMOO stands for Spot Color Halftone Metric Optimization Organization.)
Third problem: How do you compute the spectrum of a halftone? You can't accurately estimate the spectrum (or color) of a halftone using TVI and Murray-Davies.
Which is better?
So, the natural question is, which equation is more better? Yule-Nielsen or Noffke-Seymour?
First, I need to acknowledge my own affiliations. Many of you may be under the impression that my last name is "Math Guy". This is not quite correct. My middle name is "the Math Guy", and my last name is Seymour. Yes... the Seymour of the Noffke-Seymour equation.
Second, I will make a totally impartial statement which can be proved with algebra. At the extremes, the two equations (YN and NS) are identical. At the end of minimum richness, they both simplify to the Murray-Davies equation. At the other end (maximum richness) they both simplify to Beer's law.
Both equations are based on verifiable assumptions about the underlying physics. Light spreads in the paper, and that causes halftones to be richer. Halftones dots squish out and that causes halftones to be richer. Which one is the predominant effect?
I will make another totally impartial statement. It doesn't really much matter which physical effect is larger. It has been demonstrated through looking at a bunch of data that numerically, the effects are very similar. In between the two extremes, the two equations act very similarly. I suppose some math guy could figger some way to figger just how close the two equations are. But, experience says they are close.
In short, it doesn't much matter which equation (YN or NS) is used. I prefer mine, of course, because. Just "because".
Call to action
What to do about this? To be honest, I don't know. But, the first step to recovery is a trip to the bookstore to buy a shelf full of self-help books. (While you are there, ask about my latest book, How I Recovered from My Addiction to Self-Help Books.)
Part of the problem is that Murray-Davies is such a wonderfully simple equation. You can easily solve it going forward. As it is written above, you can plug in the spectrum of the solid, the substrate and a dot area, and it will give you an estimate of the spectrum of that halftone. But (and here is the cool part) anyone who remembers some of their high school algebra can solve the Murray-Davies equation for the dot area. Plug in the three spectra (solid, substrate, and halftone) and you can solve for the apparent dot area. You can poke this into one cell of a spreadsheet even after a whole evening of experimenting with Beer's law.
This does not hold true for the YN or NS equations. :( These are both "trap door" equations. You can go one way easily, but going the other way requires a bunch more cells, maybe even a whole page. They both require an iterative approach to solving.
If only I knew a math guy who could figger this out!
1: How many colors are there?
2: How many colors are in your rainbow?
The way you interpret those questions can give different answers. Further I think this is where confusion in the industry comes; from laymen to scientist.
I say this because the first question is more scientific; how many colors are there…actually?
For this discussion, let’s look at the “reflectance curve” of light or what “makes” our color as a guide.
If we use what has been defined as the “visible spectrum” of electromagnetic radiation, we find ourselves roughly between 380nm-700nm. Over the years we’ve had spectrophotometers break this down for us with % reflectance across this band. Leaving out fluorescents for this exercise and saying that 0% reflectance is absolute Black (absence of light) and 100% is absolute White (all light). The earlier models commercially available could read every 20nm; now we have models widely available that ready every 10nm; newer models becoming available that can read every 5nm. But let’s just say every 1nm; for if there is a difference in reflectance then there is a difference in color (were not talking about perceivable color just yet).
That’s means from 380 to 700 we have 321 distinct points available for our reflectance curve across the visible spectrum.
Each point has the potential to reflect all light 100% or no light 0%, as well as all points in-between; leaving out decimals for simplicity’s sake (we should measure out to at least two however 000.00) that gives us at least 101 points to choose from.
So we find our % reflectance or “n” is the number of things to choose from, and we choose 321 of them or “r”. With order not being important, and repetition allowing, we have our formula for “how many colors are there?”:
(n+r-1)!/r!(n-1)!
The answer is striking, so I’ll give the short one: 7.83532204e+98
-This is roughly (we only used 0%-100% as whole values) how many colors are available in the visible spectrum for us “to be able” to perceive.
The next question is ambiguous; “how many color are in your rainbow”, or how I read it; how many colors can you see?
You showed a chromaticity diagram in your blog, with that as a reference;
The way humans perceive light can be compared to how we engineer color as well. We have rods, cones, and available “opsins” (light sensitive chemicals) in our eyes that allow us to perceive shades. This is inverse but still comparable to the Red, Green, and Blue LED’s that make up our computer monitors, or the CMYK pigments in our printers. In the diagram you show what we can see vs. what we can produce or what’s in or out of gamut.
Similar to how you mention “it is impossible to build a computer monitor with three fixed lights that will display all possible colors” , it is additionally impossible for the opsins in our eyes to “perceive” all colors that are available to “receive”.
So depending on who you are, how old you are, your gender, race, which eye you use and even what species you are we all “perceive” color differently. This is what makes color so hotly debated and unique! There are even tetrachromats, or women who can see FOUR distinct ranges of color; making their world much more rich I can imagine.
This is the number where no one really has the right answer and as you state in your blog: “Pick a number between 3 and 16,777,216” .
I would be curious to know if anyone has performed a study or has information on the ability of the opsins to receive light at various levels?
This would allow us to create a similar chromaticity diagram for what we “should” be able to perceive vs. what is available to receive.
Interesting topic; I look forward to other responses.
-Ryan Stanley
[Me - I am going to disagree a little bit, Ryan, on a semantic basis, with your scientific answer. It comes down to what the word "color" means. I think the definition that you have given is something like "unique spectral stimulus". If you go down this path, then I think the number you should come up with is a zillion to the zillionth power, since each of the zillion photons received by the eye could have any of the zillion available wavelengths. But, I don't think it's fair to call each unique spectra a "color". Color does not occur at least until the photons enter the eye. This is, of course, semantics.]
Amrit Bindra • There are as many colors as one could perceive or as a community we all could jointly perceive.
Gary Reif • This is all a reminder that we live in an analog world.
George Dubois - If you go by the L,a*,b* color sphere where virtually all colors go from a= -60 to +60 and b=-60 to +60 and L goes from 0 to 100 then you have a color space of 1.13 E 6 (1,130,000). If taking a Delta E for most people of 1.0 being distinguishable then there are 1.13 million colors. If you prefer to say that good people can see to .5 Delta E then the number would be 4.5 m.