Tuesday, May 8, 2018

The heyday of expanded gamut printing patents

In the previous installment of this series on the history of expanded gamut printing, I chronicled three times where augmenting CMYK with a few extra colors was independently invented. There was such an uproar to my post that I had to write an addendum to add all the examples that I had missed.

At Hallmark Cards, the technique served a niche need for that time and place. The work of Harald Kueppers seems to have found a different niche, and gained some attention, but it saw limited use. And the developments at Dainippon, while they were very similar to what we see today, have left little trace in the history books. All the examples cited by friends also wound up being niches.

Sad fact: expanded gamut did not go mainstream during this time period.

One of the commentators on my post commented a comment about the futility of doing patent searches to dig up history. So today, I look exclusively at the patent record. In this blog post, I look at a period of twelve months in 1994 and 1995. These 372 days rocked the world of CMYK printing to its the very foundations. You think I'm being overly melodramatic? Consider this: These 372 days saw not one, not two, not three, four, or five, not six, but seven filings for patents on expanded gamut printing. CMYK printing. World of CMYK printing, consider yourself rocked.

Expand my expanded gamut, baby!

Hutcheson, Du Pont, March 29, 1994

If one cyan print unit is good, then two must be better, right? And if you print with two cyan print units, why not two magenta, and two yellow, and two black? The idea is to give a double bump anywhere that you need more ink than a single print unit can provide. This was invented by the very modest Don Hutcheson, and marketed by Dupont under the name HyperColor. I guess someone vetoed the name HyperDon.

Don'cha just love the cute drawings in patents?

The technique can be considered an expanded gamut process, since it does expand the gamut. It just uses CMYK as the additional colors, instead of OGV or some other collection.

Some of my readers may have met Don Hutcheson. He is still in the business, and is actually still working on this project. Idealliance's XCMYK project is a way to expand the gamut by pushing the standard CMYK to higher densities. After 24 years, one would hope that he will be making some progress soon.

A note on patents: Patents generally have a section at the beginning that describes the background of the invention or alternately, the prior art, that is, the existing stuff related to the new stuff being invented. The title prior art is actually shorthand for prior art bashing, since this section usually highlights the deficiencies of what is already out there. The prior art section is followed by an obligatory section  where the inventor explicitly states the purpose of the invention. This section is obligatory because patents have to be for something useful. I found that out the hard way when I tried to patent a wind tunnel with left-handed ear flaps!

What was the purpose for this (I mean Don's) invention? A quote from the patent: "... it is believed to be advantageous to provide a method for extending the color printing density range of a printing device without introducing special or non-process printing inks or unconventional pre-press proofing systems..."

Plettinck and Van de Capelle, Barco, April 29, 1994

Technically, this is not a printing method. It is a way to convert one color separation (based on CMYK) into another separation based on non-standard inks. What do they mean by "non-standard"? Here is an example from the patent:

For example, a chocolate manufacturer will prefer an ink set wherein brown ink plays a more dominant part.... So for example PANTONE (registered trademark) red, process yellow, and PANTONE brown form a set of non-standard inks that are used for printing packaging material for chocolate.

Reading the patent makes my mouth water!

Well... ok... maybe this isn't really expanding the gamut, although it could. I just couldn't pass up a patent that talked about chocolate. Those of you who are chocolate fanatics will understand.

What is the purpose of this invention? "The object of the invention is to provide a method for generating printing data wherein the second colour separation is determined in a more efficient and non-empirical way and a result is that the printing quality remains unchanged or is even increased."

Eder and Maerz, Eder Repros Offset Repro GMBH, May 19, 1994

This patent is in German, so I admit to not having read it in full. Well, actually, I didn't read any of it. But, I can tell you that Eder has been described by Anastasios Politis as: "One  of  the  most  significant  pioneers  in  processing  CMYK  +  x  colors...". I also know that Linotype-Hell marketed the Eder software under the name Eder MCS (Multi-Color Separation). More on that in a bit...

The company Eder still exists, and is doing software under the byline "product communication in the digital age".

Printing of the King Eider duck may benefit from ederMCS color separation

What was the purpose of the invention? I did some OCR on images from the pdf of the patent, and translated the German text into English: "It is therefore an object of the invention to provide a method for creating a color print image, with the help of which create high-brilliance color images, the required printing effort is reduced compared to the seven-color printing."

What is the purpose of me asking that question all the time? Please be patient. I am actually going somewhere with this. Suffice it to say that, so far, making prettier pictures has been the main goal so far.

Boll and Gregory, Eastman Kodak, October 21, 1994

One of the many things I like about writing patents is that the patent writer is allowed to be his or her own lexicographer. That means they can make up words! The title of this patent contains the word extra-quarternary, which I take to mean "beyond four".

Some comments on this uber-cool word. First, Harold Boll told me in an email: "I longingly love that word too, mainly because it should have been in the title of my first patent!" In the body of his patent, he used the word extra-quaternary. Due to a clerical error, an r was added to the word: extra-quarternary

Yoko was an extra-quaternary

Second comment on the word: several writers have used the term extra-trinary to connote expanded gamut printing. This is just plain wrong!

Kodak first got their feet wet working on a profile for Pantone's expanded gamut product, Hexachrome. More on Hexachrome later... 

Kodak had at least one major customer for their software product, Hallmark Cards. If you remember all the way back to the first blog post in this series, you will recall that Hallmark was big into expanding their gamut in the 60's.

I'm getting ahead of myself a bit here, but Kodak introduced an expanded gamut product called Spotless in 2011, 17 years after the Boll and Gregory patent. It is likely that there is not direct connection between the work of Harold and Spotless. Why would Kodak jump back into the expanded gamut ballpark? Hang onto that thought. I will come back to it.

What was the purpose of this invention? "It is another object of the present invention that it is uniquely capable of exploiting all of the attainable color gamut afforded by an n-ink (n>4) printing process and thereby achieves maximum colorfulness for rendered colors."

Maximum colorfulness... yum.

Herbert and DiBernardo, Pantone, November 29, 1994

Everyone in the print industry knows of Pantone. Lawrence Herbert is the guy who started Pantone. His son, Richard Herbert, took over the reigns. Lawrence and Al DiBernardo are the guys who invented Hexchrome, which was perhaps the most well-known of the mid 1990s commercial offerings for expanded gamut printing.

This system uses orange and green as the additional colors (there is no additional blue or violet ink). They wanted to keep the number of inks down to six, so as to make it usable on more presses. The ink set also includes richer CMYK inks, and some of the inks are fluorescent so as to make them more vibrant.

One of the things that distinguished Hexachrome is that they had a special fandeck for the Hexachrome colors. These guides had all the colors in their regular book, but with one difference. The regular Pantone guides have a recipe for how to mix each color in a bucket of ink. The Hexchrome guides have a recipe for how to mix halftones on press to make the color.

 Still available on ebay

If the fan deck of expanded gamut colors came from any other company, I would say that this was a brilliant marketing move. It certainly raised the awareness of the product to have a physical sample of the system. But since Pantone was kinda in the business of making fan decks, it wasn't so much brilliant as it was obvious.

What is the purpose of this invention? The first few words of the summary are: "A printing system for high fidelity printing of an image is provided..." 

According to the patent, Hexachrome is all abut making high fidelity colors. But (important point here for my narrative) the Hexachrome book really can't be used to make pictures.  

Seinfeld's 100th episode, February 2, 1995

The 100th episode of Seinfeld aired during the 372 days that rocked the world of CMYK printing. Coincidence?

Jerry Seinfeld has yet to comment
on his alleged links to expanded gamut printing 

Cooper, Linotype-Hell, March 27, 1995

This patent is a two-step process. First the CMYK separation is created, and then a correction is determined. This is all pretty obvious when looking at the diagram below from the patent.

The patent office desperately needs a service for
colorizing gorgeous drawing from old patents

Linotype-Hell released this as HiFi Color 3000 in 1994. In 1995, they announced that they would be selling the ederMCS package. It would have been interesting to have been a fly on the wall for the discussions they had about switching over to someone else's product.

What is the purpose for this invention?  I will skip the patent, and go to a press release for High Fidelity Color Printing:

Why would anyone want to print seven inks?
    • Seven inks can print a larger color gamut which includes colors that the four process color inks cannot achieve.
    • Seven inks can achieve a brighter color appearance and improved modulation of color.
    • Seven inks allow closer color matches to the original.
    • Printing with seven inks produces cleaner reds, greens, and blues.

Here is an interesting quote from the patent: "Spot colors are not considered in this application." Hang onto that thought. I will get back to it. Really. I am getting to something.

Bernasconi, Opaltone, April 5, 1995

Mathew Bernasconi developed a system of expanded gamut which uses CMYK+RGB. This is one of the few systems patented in the heyday of expanded gamut printing patents that has survived. This patent covers a device which scans a photograph and determines a set of color separations. Conceptually, there are two scans. The first scan is that of a traditional scanner, where a CMYK separation is done. The second scan creates a separation for the expanded inks to make up for the limitations of the first separation.

One difference between this patent and the others is that the extra-quaternary colors are preferably red, green, and blue instead of orange, green, and violet. Bernasconi explains the use of red over orange,

Orange is not a primary color, it’s a secondary (i.e mixed from red & green light). Therefore using orange ink in an expanded system actually restricts the color gamut. A red primary mixed with a yellow primary creates pure orange (see overprint image below) thus expanding the gamut whereby the red primary is also mixed with magenta to create “scarlet” reds. The hue angle difference between 100% overprint (R+Y) & (R+M) should be >30ยบ. This hue angle difference cannot be achieved with 100%  (O+Y) & (O+M) because the orange is too yellow from the outset.

This is not the NBC peacock

Just in case you are getting a bit confused about which set of colors are being used as primaries, I provide the comparison in the image below. Which one is correct? The concept of primaries is based on RGB color theory, which is a simplification of color science. So, primaries are not really defined in color science. If, however, you seek your primaries based on color engineering, then the correct primaries are whatever set of pigments give you the biggest gamut. Finally, if you are a color practitioner, then the correct primaries are the ones that get you the colors that you want.

Comparison of the chosen ink sets

Another note on patents in general: the body of any patent describes specific embodiments of the invention. In the case of Bernasconi's patent, the addition of red, green, and blue inks to CMY is an embodiment. But the teeth of a patent is in the claims. The claims are generally much broader, covering many different embodiments. In this case, the first claim refers to "a plurality of data channels", instead of listing a specific set of inks. This means that the Opaltone patent could cover CMY+RGB (the preferred embodiment), or it could cover CMYK+OGV or RGB+CMYK.

In a much later patent (2011), Bernasconi described a CMY+RGB variation on this invention. Instead of using black ink, this system mixes red, green, and blue inks to make black. In this way, expanded gamut printing can be done on a six color press.

What was the purpose for this invention? "... saturated colours such as deep reds, greens and blues cannot be reproduced satisfactorily due to the limited print range of four colour process."

One more expanded gamut effort

Mark Mazur acquainted me with another expanded gamut effort in this time frame. He says that it was the first product in the packaging industry that allowed the user to select his own set of pigments.

The company is called Specialcolor. According to their website, they started selling expanded gamut color separation software (under the name ICISS) in November of 1995. This is just after the 373 days that shook the very foundations of the CMYK world, but I would argue that, had Glynn Hartley decided to file a patent, it would have been in the critical time period.

I did search for patents from Glynn. Couldn't find any in the US or the European database. His website doesn't list any patents, so I am guessing he never filed. That's not to say that he didn't invent anything that was patentable. I think it's a pretty good bet that there was something is this effort that would be inventive enough to get a few claims in a patent.

So what happened?

In 1991, Don Carli made a bold prediction "High Fidelity methodologies ... Represent a revenue opportunity potentially accounting for as much as 15 - 20% of the $150 billion dollar world-wide color printing market by the end of the decade." Speaking of cool made-up words, I should mention that Don Carli coined the phrase HiFi printing. I also remember hearing him refer to stochastic screening as sarcastic screening. Love the guy.

These predictions were enabled by technology in the mid 1990s. Back in the old days, the thing that made plates was a combination scanner (to scan the films), computer (digital or analog, to do the math for color conversion and screening, and platesetter (to make the physical plates). This is a pretty closed system. Only a few engineers really got a chance to play with the cool stuff inside. This changed in the early 1990s.

Apple provided affordable workstations that could play with images before they went to plate -- desktop publishing. In 1994, Creo introduced the first Computer To Plate (CTP) system. With these two pieces, a larger group of engineers could play with the way color is separated, and then make plates.

Gary Field points to another necessary technology that enabled the Heyday of Expanded Gamut Printing Patents: stochastic screening, AKA FM screening. When additional inks are added to CMYK, moire patterns show up. Icky, objectionable moire patterns. FM screening is a way to avoid these icky, objectionable moire patterns. Now, FM screening goes way back to 1976, but Gary argues that "it wasn't until the introduction of Agfa's CristalRaster in 1993, that this technology became suitable for high quality work."

Thus, desktop publishing, CTP, and FM screening were the final enablers that made it possible for engineers to scan in image files, play with them on a computer with enough horsepower to do interesting stuff, send out the files to have plates made, and use those plates for high quality printing. The playground for innovation was opened.

By the late 1990s, we had all the technology in place from multiple vendors for expanded gamut printing. Separation software was available from Kodak, eder, Opaltone, ICISS, and Pantone. Inks were available through Pantone or Opaltone, or from your local ink vendor. Even Adobe jumped on the bandwagon. Postscript 3, which became available in 1997, included support for HiFi color.

Look out!! The expanded gamut ink train is coming through!


Don Hutcheson wrote a "state-of-the-market" article for GATF World in 1999. His first sentence: "Despite a splashy introduction in the early 1990's, HiFi color printing has grown very little in the last five years."

Hexachrome was well known, but was it a commercial success? It was estimated in 1999 (Hutcheson's article) that Hexachrome was in use by only a few hundred printers. Bear in mind that at this time, there were tens of thousands of printers. Another article (from Glynn Hartley) said in 1999 that "there is a perceived low take up of Hexachrome".

In the same article about Glynn, he reported that there were "over 100 ICISS users currently operating in the UK." Maybe the software sold for the equivalent of $1000 a copy? I would call this a moderately successful small business. I don't want to appear to disparage him, but this is still a small business.

Hexachrome was discontinued in 2008, but Opaltone is also still around. They have their niche in the digital printing market. But they are not a huge company. ICISS is also still around today, but I don't see 100 employees on LinkedIn.

So what happened?

Expanded gamut was showing so much promise. Why didn't it fulfill the hype and become the default printing technology?

Here is an adage which is important to developers of new products: People are generally not willing to pay more for higher quality. There may be niches where the extra cost is justified, but if you want a product to hit prime time, look for ways to make it cheaper. Better yet, look for ways that it can save your customer money.

Adding a few more inks may make prettier pictures, but it will cost more. Prettier, but more expensive pictures are definitely in the niche bucket.

Kevin Bourquin has pointed to another issue that held expanded gamut back in the 90s: "I think the problem in 1994 was that while there were patents about how to do separations and some software to help, it was not well integrated into the production workflows. This made it cumbersome for companies to keep streamlined workflows." Having software to do the color separation is super cool, but you also have to be able to design, create a proof, do the RIP (with FM screening), set up profiles and plate curves, and do process control at the press side. Finding a collection of software together from multiple vendors to do something new can be a challenge.

So what finally happened?

In 2013 Mark Mazur conducted a survey that estimated that 10% to 20% of printers in the flexo world were using extended gamut. Don Carli's prediction came true, but about 15 years later than he predicted, and only within one segment of the print market.

More recently, the percentage has been soaring. Dawn Connell (Brand Marketing of Snyder’s Lance, who own Snyder’s pretzels, Jays, Kettle, Pop Secret, and Archway, to name a few) spoke at the Flexographic Technical Association forum in spring of 2016. In her presentation she said that 85% of their work is expanded gamut. 

In 2016, Kevin Bourquin of Cyber Graphics told me that they have 5500 SKUs separated for expanded gamut. I just checked back with him. As of April 30, 2018, the number is 8615. I should also mention that Kevin spoke on expanded gamut at the FTA Forum conference in Indianapolis on May 7, 2018. (Rumor has it that he mentioned my blog.)

Kevin's presentation isn't the only presentation on expanded gamut at a high profile conference. I just got news that Mike Strickler will be speaking on the same topic at another big print conference at the end of September / beginning of October. This won't be just a quick twenty minute thingie. He has a whole seminar. Smart guy, this Mike fellow. We taught each other everything we know.

Having guys with these credentials... speaking at such prestigious conferences... How can you say that expanded gamut is not a big thing now?!??!

It's not about pretty pictures

Why this huge recurrence?

Kevin points to another enabling technology: "But the first real tipping point was about 2004. Digital flexo plate had gotten a lot better and could print somewhat consistent if you tightly controlled to process. At the same time Esko and Kodak at the Drupa show, committed development resources to ingrate these tools into the workflows that people used to push files." As you can tell, Kevin is big on this whole workflow thing.

Mark and Kevin both pointed to one major snack food company that was an early adopter. Frito Lay was aggressively pushing to drive cost down and quality up. It's tough to meet both of those goals without doing some retooling.

But enabling technology doesn't necessarily translate into market success. Companies need a reason to want to invest in change. According to Mark Samworth of Esko, "The number one way to reduce costs in packaging printing is to reduce the use of custom spot colors." He has no idea whether this is true or not, but he did say I could quote him on this.

It probably seems like ages ago that I mentioned that Kodak jumped back into the expanded gamut in 2011 market with Spotless. (Scroll back if you don't remember.) The name is pretty clever, really. The word means clean, but literally, it means without spots. The pun refers to the fact that expanded gamut printing can be used to replace the icky-dirty practice of spot color printing. Roughly 90% of the Pantone book of spot colors can be printed as a halftone of CMYKOGV.

This saves money. In an old-school print shop, the printer would print the first job of the day with CMYK plus a couple of spot colors. To switch over for the second job, the print units with the spot colors need to be cleaned out to put in a few other spot colors. Cleaning out the print units takes time. Furthermore, the left-over ink can't be just poured down the drain. It has to be stored in buckets for future jobs. I have seen shops that have invested a lot of money just in shelving units to store leftovers. 

Cleaning up after a spot color ink party takes time

With expanded gamut printing, the mixing of inks to make spot colors occurs not in the ink kitchen in buckets, but rather, on the press with halftone dots. Hence, there is no need to clean out the CMYKOGV print units between jobs.

I spoke with Steve Balschi (who is a prepress guy at PrintPak, huge packaging printer), who said that they have plants where all they print is expanded gamut. Steve went on to explain that they had three type of expanded gamut jobs: 1) jobs where only spot colors are printed expanded gamut, and images are left CMYK, 2) jobs where spot colors and images are converted to expanded gamut, and 3) jobs that are a mixture. Whenever possible, they do not convert the images. But why would they want to? They're trying to match an image that was printed with CMYK. The best way to do that is to print CMYK. This underscores my point that it ain't about prettier images.

A further savings comes from the ability to gang jobs, as illustrated in the image below. Multiple related products are printed on the same press as one run, rather than as multiple smaller runs. The same amount of printing, but with only one make ready.

Choco Lotta is one of my biggest sources of snack foods

Spot color replacement is big not only in and of itself, but it enables this gang printing which is like, way big. John Elleman commented on LinkedIn: "[Spot color replacement] is most commonly used for creating flavor/form coding across multiple packages allowing gang printing all on one form versus sequential printing with spot colors, which increases cost for extra printing plates and change over time on press." Kevin Bourquin had a similar comment: "The true benefit is the economics involved in running multiple jobs in combo after replacing all the spot colors."

When has an idea's time come?

Thanks for sticking it out through this long and boring dissertation about the history of expanded gamut printing. We finally get to the moral of this series of blog posts.

In the previous installment (and the addendum) we see that just having a clever idea doesn't make you a millionaire. Unless of course that clever idea is to marry into a hugely wealthy family. In the first part of this blog post we see that a clever idea with a slick implementation is also not necessarily a ticket to the Filthy Rich Club. 

Here is the moral: An idea's time comes when the idea meets up with both the enabling technology and the need. I put that in italics to remind people to quote me on this. The idea of printing with inks in addition to CMYK is a clever idea. Desktop publishing, FM screening, high quality plates, and a full workflow solution are all enabling technologies. Replacement of spot colors was the need that made this idea worthwhile.

When an idea's time has come


Normally, I just make stuff up for my blogs. In this case, I thought I might try something a little different. I would like to thank the following folks for making sure my facts were as factual as possible: Don Hutcheson, Mark Mazur, Steve Balschi, Kevin Bourquin, Gary Field, Robin Myers, Mike Strickler, and Mathew Bernasconi.


Bernasconi, Color Printing Process and Product, US Patent #5,751,326, filed April 5, 1995

Bernasconi, Color separation and reproduction method to control a printing process, US Patent 8,064,112, filed November 22, 2011

Boll and Gregory, Color-to-ink  transformation for extra-quarternary printing processes, US Patent 5,563,724, filed October 21, 1994

Carli, Don, and L. Mills Davis, High Fidelity Color Rendering and Reproduction, TAGA 1991

Cooper, Process for creating five to seven color separations used on a multicolor press, US Patent 5,687,300, filed March 27, 1995

Eder and Maerz, Producing colour printed image from scanner, German Patent #4,417,449, filed November 23, 1995

Hartley, Glynn, PrintWeek, Bespoke HiFi provides value added market for print films, December 10, 1999

Herbert and DiBernardo, Six-color process system, US Patent 5,734,800, filed November 29, 1994

Hutcheson, Extended density color printing, US Patent 5,528,377, filed March 29, 1994

Hutcheson, Dom, HiFi Color Growing Slowly, GATF World magazine, 1999

Linotype-Hell, High Fidelity Seven Ink Printing, 1994

Plettinck and Van de Capelle, Method and a device for generating printing data in a color space defined for non-standard inks, US Patent 5,689,349, filed April 29, 1994

Politis, Anastasios, et al., Extended Gamut Printing: A review on developments and trends, 1st International Printing Technologies Symposium (PrintInstanbul 2015)

Wolf, Kurt, PS imagesetter: a reasonably priced entry with the Linotronic Mark series, 1995

1 comment:

  1. Good synoptic. In your timeline mention should probably also be made of Agfa Foto Tune Pro, CSI Color Blind, Kodak KCMS, VISU Tehnologies CoCo/ICISS, FSI Kolorist, and Linotype-Hell Eder MCS.

    I was on the development team for Kodak Spotless (which was begun at Creo). It was always designed to be primarily used to replace spot colors with multi-hue screen tint builds. The option of course was to use those extended process inks to enhance imagery. We had also developed "DMaxx" printing - running at higher than standard solid ink densities - to expand gamut.

    You mentioned barriers to adoption. We ran into that early on. First, not of our customers that were using these techniques was willing to talk publicly about its use. It was their "secret sauce" and didn't want their competition to know what they were doing and how they were doing it. So, no testimonials, and printers tend not to want to be pioneers prefering to let others go first.
    Second, successful use of the technology to replace spot colors required the printer to market the capability to its customers. Printers are generally not good at that and prefer to just take orders. So, unless the brand owners demanded it - the printer wasn't going to adopt it.